Skip to content

Similarity API

Basic Similarities

Raw Dot Product

Compute dot product similarity between rows of matrix1 and columns of matrix2.

Parameters:

Name Type Description Default
matrix1 spmatrix

Input sparse matrix (e.g., user-item or item-user).

required
matrix2 Optional[spmatrix]

Optional second matrix. If None, uses matrix1.T.

None
k int

Number of top-k items per row.

100
shrink float

Shrinkage value that prevents instability when normalizations are small.

0.0
shrink_type Literal['stabilized', 'bayesian', 'additive']

Type of shrinkage: 'stabilized', 'bayesian', 'additive'.

'stabilized'
threshold float

Minimum similarity value to retain.

0.0
binary bool

Whether to binarize the input matrix before similarity computation.

False
target_rows Optional[Union[list[int], ndarray]]

List or array of row indices to compute. If None, computes all.

None
target_cols Optional[Union[list[int], ndarray, spmatrix]]

Columns to include before top-k. Can be a list or sparse mask matrix.

None
filter_cols Optional[Union[list[int], ndarray, spmatrix]]

Columns to exclude before top-k. Can be a list or sparse mask matrix.

None
verbose bool

Whether to show a progress bar.

True
format_output Literal['csr', 'coo']

Output format: 'csr' or 'coo'. Use 'coo' on Windows.

'coo'
num_threads int

Number of threads to use (0 means all available cores).

0

Returns:

Type Description
spmatrix

A sparse matrix of shape (n_rows, n_cols) in the specified format,

spmatrix

containing the top-k dot product similarities.

Source code in similaripy/similarity.py
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
def dot_product(
    matrix1: spmatrix,
    matrix2: Optional[spmatrix] = None,
    k: int = 100,
    shrink: float = 0.0,
    shrink_type: Literal['stabilized', 'bayesian', 'additive'] = 'stabilized',
    threshold: float = 0.0,
    binary: bool = False,
    target_rows: Optional[Union[list[int], np.ndarray]] = None,
    target_cols: Optional[Union[list[int], np.ndarray, spmatrix]] = None,
    filter_cols: Optional[Union[list[int], np.ndarray, spmatrix]] = None,
    verbose: bool = True,
    format_output: Literal['csr', 'coo'] = 'coo',
    num_threads: int = 0
) -> spmatrix:
    """
    Compute dot product similarity between rows of matrix1 and columns of matrix2.

    Args:
        matrix1: Input sparse matrix (e.g., user-item or item-user).
        matrix2: Optional second matrix. If None, uses matrix1.T.
        k: Number of top-k items per row.
        shrink: Shrinkage value that prevents instability when normalizations are small.
        shrink_type: Type of shrinkage: 'stabilized', 'bayesian', 'additive'.
        threshold: Minimum similarity value to retain.
        binary: Whether to binarize the input matrix before similarity computation.
        target_rows: List or array of row indices to compute. If None, computes all.
        target_cols: Columns to include before top-k. Can be a list or sparse mask matrix.
        filter_cols: Columns to exclude before top-k. Can be a list or sparse mask matrix.
        verbose: Whether to show a progress bar.
        format_output: Output format: 'csr' or 'coo'. Use 'coo' on Windows.
        num_threads: Number of threads to use (0 means all available cores).

    Returns:
        A sparse matrix of shape (n_rows, n_cols) in the specified format,
        containing the top-k dot product similarities.
    """
    stabilized_shrink, bayesian_shrink, additive_shrink = __get_shrink_values__(shrink, shrink_type)
    return _sim.s_plus(
        matrix1, matrix2=matrix2,
        k=k,
        stabilized_shrink=stabilized_shrink,
        bayesian_shrink=bayesian_shrink,
        additive_shrink=additive_shrink,
        threshold=threshold,
        binary=binary,
        target_rows=target_rows,
        target_cols=target_cols,
        filter_cols=filter_cols,
        verbose=verbose,
        format_output=format_output,
        num_threads=num_threads
    )
Cosine Similarity

Compute cosine similarity between sparse vectors.

Parameters:

Name Type Description Default
matrix1 spmatrix

Input sparse matrix.

required
matrix2 Optional[spmatrix]

Optional second matrix. If None, uses matrix1.T.

None
k int

Number of top-k items per row to keep.

100
shrink float

Shrinkage value that prevents instability when normalizations are small.

0.0
shrink_type Literal['stabilized', 'bayesian', 'additive']

Type of shrinkage: 'stabilized', 'bayesian', 'additive'.

'stabilized'
threshold float

Minimum similarity value to retain.

0.0
binary bool

Whether to binarize the input matrix before computation.

False
target_rows Optional[Union[list[int], ndarray]]

List or array of row indices to compute. If None, computes all.

None
target_cols Optional[Union[list[int], ndarray, spmatrix]]

Columns to include before top-k. Can be a list or sparse mask matrix.

None
filter_cols Optional[Union[list[int], ndarray, spmatrix]]

Columns to exclude before top-k. Can be a list or sparse mask matrix.

None
verbose bool

Whether to show a progress bar.

True
format_output Literal['csr', 'coo']

Output format, either 'csr' or 'coo'. Use 'coo' on Windows.

'coo'
num_threads int

Number of threads to use (0 = all available cores).

0

Returns:

Type Description
spmatrix

A sparse matrix of top-k cosine similarities in the specified format.

Source code in similaripy/similarity.py
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
def cosine(
    matrix1: spmatrix,
    matrix2: Optional[spmatrix] = None,
    k: int = 100,
    shrink: float = 0.0,
    shrink_type: Literal['stabilized', 'bayesian', 'additive'] = 'stabilized',
    threshold: float = 0.0,
    binary: bool = False,
    target_rows: Optional[Union[list[int], np.ndarray]] = None,
    target_cols: Optional[Union[list[int], np.ndarray, spmatrix]] = None,
    filter_cols: Optional[Union[list[int], np.ndarray, spmatrix]] = None,
    verbose: bool = True,
    format_output: Literal['csr', 'coo'] = 'coo',
    num_threads: int = 0
) -> spmatrix:
    """
    Compute cosine similarity between sparse vectors.

    Args:
        matrix1: Input sparse matrix.
        matrix2: Optional second matrix. If None, uses matrix1.T.
        k: Number of top-k items per row to keep.
        shrink: Shrinkage value that prevents instability when normalizations are small.
        shrink_type: Type of shrinkage: 'stabilized', 'bayesian', 'additive'.
        threshold: Minimum similarity value to retain.
        binary: Whether to binarize the input matrix before computation.
        target_rows: List or array of row indices to compute. If None, computes all.
        target_cols: Columns to include before top-k. Can be a list or sparse mask matrix.
        filter_cols: Columns to exclude before top-k. Can be a list or sparse mask matrix.
        verbose: Whether to show a progress bar.
        format_output: Output format, either 'csr' or 'coo'. Use 'coo' on Windows.
        num_threads: Number of threads to use (0 = all available cores).

    Returns:
        A sparse matrix of top-k cosine similarities in the specified format.
    """
    stabilized_shrink, bayesian_shrink, additive_shrink = __get_shrink_values__(shrink, shrink_type)
    return _sim.s_plus(
        matrix1, matrix2=matrix2,
        l2=1,
        c1=0.5, c2=0.5,
        k=k,
        stabilized_shrink=stabilized_shrink,
        bayesian_shrink=bayesian_shrink,
        additive_shrink=additive_shrink,
        threshold=threshold,
        binary=binary,
        target_rows=target_rows,
        target_cols=target_cols,
        filter_cols=filter_cols,
        verbose=verbose,
        format_output=format_output,
        num_threads=num_threads
    )
Asymmetric Cosine

Compute asymmetric cosine similarity.

Parameters:

Name Type Description Default
matrix1 spmatrix

Input sparse matrix (e.g., user-item or item-user).

required
matrix2 Optional[spmatrix]

Optional second matrix. If None, uses matrix1.T.

None
alpha float

Controls asymmetry in cosine weighting. alpha=1 weighs only matrix1; alpha=0.5 is symmetric.

0.5
k int

Number of top-k items per row to keep.

100
shrink float

Shrinkage value that prevents instability when normalizations are small.

0.0
shrink_type Literal['stabilized', 'bayesian', 'additive']

Type of shrinkage: 'stabilized', 'bayesian', 'additive'.

'stabilized'
threshold float

Minimum similarity value to retain.

0.0
binary bool

Whether to binarize the input matrix before computation.

False
target_rows Optional[Union[list[int], ndarray]]

List or array of row indices to compute. If None, computes all.

None
target_cols Optional[Union[list[int], ndarray, spmatrix]]

Columns to include before top-k. Can be a list or sparse mask matrix.

None
filter_cols Optional[Union[list[int], ndarray, spmatrix]]

Columns to exclude before top-k. Can be a list or sparse mask matrix.

None
verbose bool

Whether to show a progress bar.

True
format_output Literal['csr', 'coo']

Output format, either 'csr' or 'coo'. Use 'coo' on Windows.

'coo'
num_threads int

Number of threads to use (0 = all available cores).

0

Returns:

Type Description
spmatrix

A sparse matrix of shape (n_rows, n_cols) containing the top-k

spmatrix

asymmetric cosine similarities in the specified format.

Source code in similaripy/similarity.py
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
def asymmetric_cosine(
    matrix1: spmatrix,
    matrix2: Optional[spmatrix] = None,
    alpha: float = 0.5,
    k: int = 100,
    shrink: float = 0.0,
    shrink_type: Literal['stabilized', 'bayesian', 'additive'] = 'stabilized',
    threshold: float = 0.0,
    binary: bool = False,
    target_rows: Optional[Union[list[int], np.ndarray]] = None,
    target_cols: Optional[Union[list[int], np.ndarray, spmatrix]] = None,
    filter_cols: Optional[Union[list[int], np.ndarray, spmatrix]] = None,
    verbose: bool = True,
    format_output: Literal['csr', 'coo'] = 'coo',
    num_threads: int = 0
) -> spmatrix:
    """
    Compute asymmetric cosine similarity.

    Args:
        matrix1: Input sparse matrix (e.g., user-item or item-user).
        matrix2: Optional second matrix. If None, uses matrix1.T.
        alpha: Controls asymmetry in cosine weighting.
               `alpha=1` weighs only matrix1; `alpha=0.5` is symmetric.
        k: Number of top-k items per row to keep.
        shrink: Shrinkage value that prevents instability when normalizations are small.
        shrink_type: Type of shrinkage: 'stabilized', 'bayesian', 'additive'.
        threshold: Minimum similarity value to retain.
        binary: Whether to binarize the input matrix before computation.
        target_rows: List or array of row indices to compute. If None, computes all.
        target_cols: Columns to include before top-k. Can be a list or sparse mask matrix.
        filter_cols: Columns to exclude before top-k. Can be a list or sparse mask matrix.
        verbose: Whether to show a progress bar.
        format_output: Output format, either 'csr' or 'coo'. Use 'coo' on Windows.
        num_threads: Number of threads to use (0 = all available cores).

    Returns:
        A sparse matrix of shape (n_rows, n_cols) containing the top-k
        asymmetric cosine similarities in the specified format.
    """
    stabilized_shrink, bayesian_shrink, additive_shrink = __get_shrink_values__(shrink, shrink_type)
    return _sim.s_plus(
        matrix1, matrix2=matrix2,
        l2=1,
        c1=alpha, c2=1-alpha,
        k=k,
        stabilized_shrink=stabilized_shrink,
        bayesian_shrink=bayesian_shrink,
        additive_shrink=additive_shrink,
        threshold=threshold,
        binary=binary,
        target_rows=target_rows,
        target_cols=target_cols,
        filter_cols=filter_cols,
        verbose=verbose,
        format_output=format_output,
        num_threads=num_threads
    )
Jaccard Similarity

Compute Jaccard similarity (intersection over union).

Parameters:

Name Type Description Default
matrix1 spmatrix

Input sparse matrix.

required
matrix2 Optional[spmatrix]

Optional second matrix. If None, uses matrix1.T.

None
k int

Number of top-k items per row to keep.

100
shrink float

Shrinkage value that prevents instability when normalizations are small.

0.0
shrink_type Literal['stabilized', 'bayesian', 'additive']

Type of shrinkage: 'stabilized', 'bayesian', 'additive'.

'stabilized'
threshold float

Minimum similarity value to retain.

0.0
binary bool

Whether to binarize the input matrix before computation.

False
target_rows Optional[Union[list[int], ndarray]]

List or array of row indices to compute. If None, computes all.

None
target_cols Optional[Union[list[int], ndarray, spmatrix]]

Columns to include before top-k. Can be a list or sparse mask matrix.

None
filter_cols Optional[Union[list[int], ndarray, spmatrix]]

Columns to exclude before top-k. Can be a list or sparse mask matrix.

None
verbose bool

Whether to show a progress bar.

True
format_output Literal['csr', 'coo']

Output format, either 'csr' or 'coo'. Use 'coo' on Windows.

'coo'
num_threads int

Number of threads to use (0 = all available cores).

0

Returns:

Type Description
spmatrix

A sparse matrix of top-k Jaccard similarities in the specified format.

Source code in similaripy/similarity.py
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
def jaccard(
    matrix1: spmatrix,
    matrix2: Optional[spmatrix] = None,
    k: int = 100,
    shrink: float = 0.0,
    shrink_type: Literal['stabilized', 'bayesian', 'additive'] = 'stabilized',
    threshold: float = 0.0,
    binary: bool = False,
    target_rows: Optional[Union[list[int], np.ndarray]] = None,
    target_cols: Optional[Union[list[int], np.ndarray, spmatrix]] = None,
    filter_cols: Optional[Union[list[int], np.ndarray, spmatrix]] = None,
    verbose: bool = True,
    format_output: Literal['csr', 'coo'] = 'coo',
    num_threads: int = 0
) -> spmatrix:
    """
    Compute Jaccard similarity (intersection over union).

    Args:
        matrix1: Input sparse matrix.
        matrix2: Optional second matrix. If None, uses matrix1.T.
        k: Number of top-k items per row to keep.
        shrink: Shrinkage value that prevents instability when normalizations are small.
        shrink_type: Type of shrinkage: 'stabilized', 'bayesian', 'additive'.
        threshold: Minimum similarity value to retain.
        binary: Whether to binarize the input matrix before computation.
        target_rows: List or array of row indices to compute. If None, computes all.
        target_cols: Columns to include before top-k. Can be a list or sparse mask matrix.
        filter_cols: Columns to exclude before top-k. Can be a list or sparse mask matrix.
        verbose: Whether to show a progress bar.
        format_output: Output format, either 'csr' or 'coo'. Use 'coo' on Windows.
        num_threads: Number of threads to use (0 = all available cores).

    Returns:
        A sparse matrix of top-k Jaccard similarities in the specified format.
    """
    stabilized_shrink, bayesian_shrink, additive_shrink = __get_shrink_values__(shrink, shrink_type)
    return _sim.s_plus(
        matrix1, matrix2=matrix2,
        l1=1,
        t1=1, t2=1,
        k=k,
        stabilized_shrink=stabilized_shrink,
        bayesian_shrink=bayesian_shrink,
        additive_shrink=additive_shrink,
        threshold=threshold,
        binary=binary,
        target_rows=target_rows,
        target_cols=target_cols,
        filter_cols=filter_cols,
        verbose=verbose,
        format_output=format_output,
        num_threads=num_threads
    )
Dice Similarity

Compute Dice similarity (harmonic mean of overlap and size).

Parameters:

Name Type Description Default
matrix1 spmatrix

Input sparse matrix.

required
matrix2 Optional[spmatrix]

Optional second matrix. If None, uses matrix1.T.

None
k int

Number of top-k items per row to keep.

100
shrink float

Shrinkage value that prevents instability when normalizations are small.

0.0
shrink_type Literal['stabilized', 'bayesian', 'additive']

Type of shrinkage: 'stabilized', 'bayesian', 'additive'.

'stabilized'
threshold float

Minimum similarity value to retain.

0.0
binary bool

Whether to binarize the input matrix before computation.

False
target_rows Optional[Union[list[int], ndarray]]

List or array of row indices to compute. If None, computes all.

None
target_cols Optional[Union[list[int], ndarray, spmatrix]]

Columns to include before top-k. Can be a list or sparse mask matrix.

None
filter_cols Optional[Union[list[int], ndarray, spmatrix]]

Columns to exclude before top-k. Can be a list or sparse mask matrix.

None
verbose bool

Whether to show a progress bar.

True
format_output Literal['csr', 'coo']

Output format, either 'csr' or 'coo'. Use 'coo' on Windows.

'coo'
num_threads int

Number of threads to use (0 = all available cores).

0

Returns:

Type Description
spmatrix

A sparse matrix of top-k Dice similarities in the specified format.

Source code in similaripy/similarity.py
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
def dice(
    matrix1: spmatrix,
    matrix2: Optional[spmatrix] = None,
    k: int = 100,
    shrink: float = 0.0,
    shrink_type: Literal['stabilized', 'bayesian', 'additive'] = 'stabilized',
    threshold: float = 0.0,
    binary: bool = False,
    target_rows: Optional[Union[list[int], np.ndarray]] = None,
    target_cols: Optional[Union[list[int], np.ndarray, spmatrix]] = None,
    filter_cols: Optional[Union[list[int], np.ndarray, spmatrix]] = None,
    verbose: bool = True,
    format_output: Literal['csr', 'coo'] = 'coo',
    num_threads: int = 0
) -> spmatrix:
    """
    Compute Dice similarity (harmonic mean of overlap and size).

    Args:
        matrix1: Input sparse matrix.
        matrix2: Optional second matrix. If None, uses matrix1.T.
        k: Number of top-k items per row to keep.
        shrink: Shrinkage value that prevents instability when normalizations are small.
        shrink_type: Type of shrinkage: 'stabilized', 'bayesian', 'additive'.
        threshold: Minimum similarity value to retain.
        binary: Whether to binarize the input matrix before computation.
        target_rows: List or array of row indices to compute. If None, computes all.
        target_cols: Columns to include before top-k. Can be a list or sparse mask matrix.
        filter_cols: Columns to exclude before top-k. Can be a list or sparse mask matrix.
        verbose: Whether to show a progress bar.
        format_output: Output format, either 'csr' or 'coo'. Use 'coo' on Windows.
        num_threads: Number of threads to use (0 = all available cores).

    Returns:
        A sparse matrix of top-k Dice similarities in the specified format.
    """
    stabilized_shrink, bayesian_shrink, additive_shrink = __get_shrink_values__(shrink, shrink_type)
    return _sim.s_plus(
        matrix1, matrix2=matrix2,
        l1=1,
        t1=0.5, t2=0.5,
        k=k,
        stabilized_shrink=stabilized_shrink,
        bayesian_shrink=bayesian_shrink,
        additive_shrink=additive_shrink,
        threshold=threshold,
        binary=binary,
        target_rows=target_rows,
        target_cols=target_cols,
        filter_cols=filter_cols,
        verbose=verbose,
        format_output=format_output,
        num_threads=num_threads
    )
Tversky Similarity

Compute Tversky similarity between sparse vectors.

Parameters:

Name Type Description Default
matrix1 spmatrix

Input sparse matrix.

required
matrix2 Optional[spmatrix]

Optional second matrix. If None, uses matrix1.T.

None
alpha float

Tversky weight for elements unique to matrix1.

1.0
beta float

Tversky weight for elements unique to matrix2.

1.0
k int

Number of top-k items per row to keep.

100
shrink float

Shrinkage value that prevents instability when normalizations are small.

0.0
shrink_type Literal['stabilized', 'bayesian', 'additive']

Type of shrinkage: 'stabilized', 'bayesian', 'additive'.

'stabilized'
threshold float

Minimum similarity value to retain.

0.0
binary bool

Whether to binarize the input matrix before computation.

False
target_rows Optional[Union[list[int], ndarray]]

List or array of row indices to compute. If None, computes all.

None
target_cols Optional[Union[list[int], ndarray, spmatrix]]

Columns to include before top-k. Can be a list or sparse mask matrix.

None
filter_cols Optional[Union[list[int], ndarray, spmatrix]]

Columns to exclude before top-k. Can be a list or sparse mask matrix.

None
verbose bool

Whether to show a progress bar.

True
format_output Literal['csr', 'coo']

Output format, either 'csr' or 'coo'. Use 'coo' on Windows.

'coo'
num_threads int

Number of threads to use (0 = all available cores).

0

Returns:

Type Description
spmatrix

A sparse matrix of top-k Tversky similarities in the specified format.

Source code in similaripy/similarity.py
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
def tversky(
    matrix1: spmatrix,
    matrix2: Optional[spmatrix] = None,
    alpha: float = 1.0,
    beta: float = 1.0,
    k: int = 100,
    shrink: float = 0.0,
    shrink_type: Literal['stabilized', 'bayesian', 'additive'] = 'stabilized',
    threshold: float = 0.0,
    binary: bool = False,
    target_rows: Optional[Union[list[int], np.ndarray]] = None,
    target_cols: Optional[Union[list[int], np.ndarray, spmatrix]] = None,
    filter_cols: Optional[Union[list[int], np.ndarray, spmatrix]] = None,
    verbose: bool = True,
    format_output: Literal['csr', 'coo'] = 'coo',
    num_threads: int = 0
) -> spmatrix:
    """
    Compute Tversky similarity between sparse vectors.

    Args:
        matrix1: Input sparse matrix.
        matrix2: Optional second matrix. If None, uses matrix1.T.
        alpha: Tversky weight for elements unique to matrix1.
        beta: Tversky weight for elements unique to matrix2.
        k: Number of top-k items per row to keep.
        shrink: Shrinkage value that prevents instability when normalizations are small.
        shrink_type: Type of shrinkage: 'stabilized', 'bayesian', 'additive'.
        threshold: Minimum similarity value to retain.
        binary: Whether to binarize the input matrix before computation.
        target_rows: List or array of row indices to compute. If None, computes all.
        target_cols: Columns to include before top-k. Can be a list or sparse mask matrix.
        filter_cols: Columns to exclude before top-k. Can be a list or sparse mask matrix.
        verbose: Whether to show a progress bar.
        format_output: Output format, either 'csr' or 'coo'. Use 'coo' on Windows.
        num_threads: Number of threads to use (0 = all available cores).

    Returns:
        A sparse matrix of top-k Tversky similarities in the specified format.
    """
    stabilized_shrink, bayesian_shrink, additive_shrink = __get_shrink_values__(shrink, shrink_type)
    return _sim.s_plus(
        matrix1, matrix2=matrix2,
        l1=1,
        t1=alpha, t2=beta,
        k=k,
        stabilized_shrink=stabilized_shrink,
        bayesian_shrink=bayesian_shrink,
        additive_shrink=additive_shrink,
        threshold=threshold,
        binary=binary,
        target_rows=target_rows,
        target_cols=target_cols,
        filter_cols=filter_cols,
        verbose=verbose,
        format_output=format_output,
        num_threads=num_threads
    )

Graph-Based Similarities

P3α

Compute P3alpha similarity using a normalized 3-step random walk.

Parameters:

Name Type Description Default
matrix1 spmatrix

Input sparse matrix.

required
matrix2 Optional[spmatrix]

Optional second matrix. If None, uses matrix1.T.

None
alpha float

Exponent for transition probabilities to control popularity effect.

1.0
k int

Number of top-k items per row to keep.

100
shrink float

Shrinkage value that prevents instability when normalizations are small.

0.0
shrink_type Literal['stabilized', 'bayesian', 'additive']

Type of shrinkage: 'stabilized', 'bayesian', 'additive'.

'stabilized'
threshold float

Minimum similarity value to retain.

0.0
binary bool

Whether to binarize the input matrix before computation.

False
target_rows Optional[Union[list[int], ndarray]]

List or array of row indices to compute. If None, computes all.

None
target_cols Optional[Union[list[int], ndarray, spmatrix]]

Columns to include before top-k. Can be a list or sparse mask matrix.

None
filter_cols Optional[Union[list[int], ndarray, spmatrix]]

Columns to exclude before top-k. Can be a list or sparse mask matrix.

None
verbose bool

Whether to show a progress bar.

True
format_output Literal['csr', 'coo']

Output format, either 'csr' or 'coo'. Use 'coo' on Windows.

'coo'
num_threads int

Number of threads to use (0 = all available cores).

0

Returns:

Type Description
spmatrix

A sparse matrix of top-k P3alpha similarities in the specified format.

Source code in similaripy/similarity.py
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
def p3alpha(
    matrix1: spmatrix,
    matrix2: Optional[spmatrix] = None,
    alpha: float = 1.0,
    k: int = 100,
    shrink: float = 0.0,
    shrink_type: Literal['stabilized', 'bayesian', 'additive'] = 'stabilized',
    threshold: float = 0.0,
    binary: bool = False,
    target_rows: Optional[Union[list[int], np.ndarray]] = None,
    target_cols: Optional[Union[list[int], np.ndarray, spmatrix]] = None,
    filter_cols: Optional[Union[list[int], np.ndarray, spmatrix]] = None,
    verbose: bool = True,
    format_output: Literal['csr', 'coo'] = 'coo',
    num_threads: int = 0
) -> spmatrix:
    """
    Compute P3alpha similarity using a normalized 3-step random walk.

    Args:
        matrix1: Input sparse matrix.
        matrix2: Optional second matrix. If None, uses matrix1.T.
        alpha: Exponent for transition probabilities to control popularity effect.
        k: Number of top-k items per row to keep.
        shrink: Shrinkage value that prevents instability when normalizations are small.
        shrink_type: Type of shrinkage: 'stabilized', 'bayesian', 'additive'.
        threshold: Minimum similarity value to retain.
        binary: Whether to binarize the input matrix before computation.
        target_rows: List or array of row indices to compute. If None, computes all.
        target_cols: Columns to include before top-k. Can be a list or sparse mask matrix.
        filter_cols: Columns to exclude before top-k. Can be a list or sparse mask matrix.
        verbose: Whether to show a progress bar.
        format_output: Output format, either 'csr' or 'coo'. Use 'coo' on Windows.
        num_threads: Number of threads to use (0 = all available cores).

    Returns:
        A sparse matrix of top-k P3alpha similarities in the specified format.
    """
    if matrix2 is None:
        matrix2 = matrix1.T
    matrix1 = _normalize(matrix1, norm='l1', axis=1, inplace=False)
    matrix1.data = np.power(matrix1.data, alpha)
    matrix2 = _normalize(matrix2, norm='l1', axis=1, inplace=False)
    matrix2.data = np.power(matrix2.data, alpha)
    stabilized_shrink, bayesian_shrink, additive_shrink = __get_shrink_values__(shrink, shrink_type)
    return _sim.s_plus(
        matrix1=matrix1, matrix2=matrix2,
        k=k,
        stabilized_shrink=stabilized_shrink,
        bayesian_shrink=bayesian_shrink,
        additive_shrink=additive_shrink,
        threshold=threshold,
        binary=binary,
        target_rows=target_rows,
        target_cols=target_cols,
        filter_cols=filter_cols,
        verbose=verbose,
        format_output=format_output,
        num_threads=num_threads
    )
RP3β

Compute RP3beta similarity: P3alpha with popularity penalization.

Parameters:

Name Type Description Default
matrix1 spmatrix

Input sparse matrix.

required
matrix2 Optional[spmatrix]

Optional second matrix. If None, uses matrix1.T.

None
alpha float

Exponent for transition probabilities.

1.0
beta float

Exponent to penalize popularity based on column sums.

1.0
k int

Number of top-k items per row to keep.

100
shrink float

Shrinkage value that prevents instability when normalizations are small.

0.0
shrink_type Literal['stabilized', 'bayesian', 'additive']

Type of shrinkage: 'stabilized', 'bayesian', 'additive'.

'stabilized'
threshold float

Minimum similarity value to retain.

0.0
binary bool

Whether to binarize the input matrix before computation.

False
target_rows Optional[Union[list[int], ndarray]]

List or array of row indices to compute. If None, computes all.

None
target_cols Optional[Union[list[int], ndarray, spmatrix]]

Columns to include before top-k. Can be a list or sparse mask matrix.

None
filter_cols Optional[Union[list[int], ndarray, spmatrix]]

Columns to exclude before top-k. Can be a list or sparse mask matrix.

None
verbose bool

Whether to show a progress bar.

True
format_output Literal['csr', 'coo']

Output format, either 'csr' or 'coo'. Use 'coo' on Windows.

'coo'
num_threads int

Number of threads to use (0 = all available cores).

0

Returns:

Type Description
spmatrix

A sparse matrix of top-k RP3beta similarities in the specified format.

Source code in similaripy/similarity.py
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
def rp3beta(
    matrix1: spmatrix,
    matrix2: Optional[spmatrix] = None,
    alpha: float = 1.0,
    beta: float = 1.0,
    k: int = 100,
    shrink: float = 0.0,
    shrink_type: Literal['stabilized', 'bayesian', 'additive'] = 'stabilized',
    threshold: float = 0.0,
    binary: bool = False,
    target_rows: Optional[Union[list[int], np.ndarray]] = None,
    target_cols: Optional[Union[list[int], np.ndarray, spmatrix]] = None,
    filter_cols: Optional[Union[list[int], np.ndarray, spmatrix]] = None,
    verbose: bool = True,
    format_output: Literal['csr', 'coo'] = 'coo',
    num_threads: int = 0
) -> spmatrix:
    """
    Compute RP3beta similarity: P3alpha with popularity penalization.

    Args:
        matrix1: Input sparse matrix.
        matrix2: Optional second matrix. If None, uses matrix1.T.
        alpha: Exponent for transition probabilities.
        beta: Exponent to penalize popularity based on column sums.
        k: Number of top-k items per row to keep.
        shrink: Shrinkage value that prevents instability when normalizations are small.
        shrink_type: Type of shrinkage: 'stabilized', 'bayesian', 'additive'.
        threshold: Minimum similarity value to retain.
        binary: Whether to binarize the input matrix before computation.
        target_rows: List or array of row indices to compute. If None, computes all.
        target_cols: Columns to include before top-k. Can be a list or sparse mask matrix.
        filter_cols: Columns to exclude before top-k. Can be a list or sparse mask matrix.
        verbose: Whether to show a progress bar.
        format_output: Output format, either 'csr' or 'coo'. Use 'coo' on Windows.
        num_threads: Number of threads to use (0 = all available cores).

    Returns:
        A sparse matrix of top-k RP3beta similarities in the specified format.
    """
    if matrix2 is None:
        matrix2 = matrix1.T
    pop_m2 = matrix2.sum(axis=0).A1
    matrix1 = _normalize(matrix1, norm='l1', axis=1, inplace=False)
    matrix1.data = np.power(matrix1.data, alpha)
    matrix2 = _normalize(matrix2, norm='l1', axis=1, inplace=False)
    matrix2.data = np.power(matrix2.data, alpha)
    stabilized_shrink, bayesian_shrink, additive_shrink = __get_shrink_values__(shrink, shrink_type)
    return _sim.s_plus(
        matrix1=matrix1, matrix2=matrix2,
        weight_depop_matrix2=pop_m2,
        p2=beta,
        l3=1,
        k=k,
        stabilized_shrink=stabilized_shrink,
        bayesian_shrink=bayesian_shrink,
        additive_shrink=additive_shrink,
        threshold=threshold,
        binary=binary,
        target_rows=target_rows,
        target_cols=target_cols,
        filter_cols=filter_cols,
        verbose=verbose,
        format_output=format_output,
        num_threads=num_threads
    )

Hybrid Similarity

S Plus

Combines Tversky and Cosine normalizations with RP3Beta-style depopularization, fully controlled by tunable weights

Parameters:

Name Type Description Default
matrix1 spmatrix

Input sparse matrix.

required
matrix2 Optional[spmatrix]

Optional second matrix. If None, uses matrix1.T.

None
l1 float

Tversky normalization strength.

0.5
l2 float

Cosine normalization strength.

0.5
l3 float

Popularity penalization strength.

0.0
t1 float

Tversky alpha for matrix1.

1.0
t2 float

Tversky beta for matrix2.

1.0
c1 float

Cosine exponent coefficient for matrix1.

0.5
c2 float

Cosine exponent coefficient for matrix2.

0.5
pop1 Optional[Union[Literal['none', 'sum'], ndarray]]

Popularity weights for matrix1. 'none', 'sum', or custom array.

'none'
pop2 Optional[Union[Literal['none', 'sum'], ndarray]]

Popularity weights for matrix2. 'none', 'sum', or custom array.

'none'
alpha float

Coefficient applied on the raw similarity value before normalizations.

1.0
beta1 float

Popularity penalization coefficient for matrix1 items.

0.0
beta2 float

Popularity penalization coefficient for matrix2 items.

0.0
k int

Number of top-k items per row to keep.

100
shrink float

Shrinkage value that prevents instability when normalizations are small.

0.0
shrink_type Literal['stabilized', 'bayesian', 'additive']

Type of shrinkage: 'stabilized', 'bayesian', 'additive'.

'stabilized'
threshold float

Minimum similarity value to retain.

0.0
binary bool

Whether to binarize the input matrix before computation.

False
target_rows Optional[Union[list[int], ndarray]]

List or array of row indices to compute. If None, computes all.

None
target_cols Optional[Union[list[int], ndarray, spmatrix]]

Columns to include before top-k. Can be a list or sparse mask matrix.

None
filter_cols Optional[Union[list[int], ndarray, spmatrix]]

Columns to exclude before top-k. Can be a list or sparse mask matrix.

None
verbose bool

Whether to show a progress bar.

True
format_output Literal['csr', 'coo']

Output format, either 'csr' or 'coo'. Use 'coo' on Windows.

'coo'
num_threads int

Number of threads to use (0 = all available cores).

0

Returns:

Type Description
spmatrix

A sparse matrix of top-k s_plus similarities in the specified format.

Source code in similaripy/similarity.py
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
def s_plus(
    matrix1: spmatrix,
    matrix2: Optional[spmatrix] = None,
    l1: float = 0.5,
    l2: float = 0.5,
    l3: float = 0.0,
    t1: float = 1.0,
    t2: float = 1.0,
    c1: float = 0.5,
    c2: float = 0.5,
    pop1: Optional[Union[Literal['none','sum'], np.ndarray]]= 'none',
    pop2: Optional[Union[Literal['none','sum'], np.ndarray]]= 'none',
    alpha: float = 1.0,
    beta1: float = 0.0,
    beta2: float = 0.0,
    k: int = 100,
    shrink: float = 0.0,
    shrink_type: Literal['stabilized', 'bayesian', 'additive'] = 'stabilized',
    threshold: float = 0.0,
    binary: bool = False,
    target_rows: Optional[Union[list[int], np.ndarray]] = None,
    target_cols: Optional[Union[list[int], np.ndarray, spmatrix]] = None,
    filter_cols: Optional[Union[list[int], np.ndarray, spmatrix]] = None,
    verbose: bool = True,
    format_output: Literal['csr', 'coo'] = 'coo',
    num_threads: int = 0
) -> spmatrix:
    """
    Combines Tversky and Cosine normalizations with RP3Beta-style depopularization, fully controlled by tunable weights

    Args:
        matrix1: Input sparse matrix.
        matrix2: Optional second matrix. If None, uses matrix1.T.
        l1: Tversky normalization strength.
        l2: Cosine normalization strength.
        l3: Popularity penalization strength.
        t1: Tversky alpha for matrix1.
        t2: Tversky beta for matrix2.
        c1: Cosine exponent coefficient for matrix1.
        c2: Cosine exponent coefficient for matrix2.
        pop1: Popularity weights for matrix1. 'none', 'sum', or custom array.
        pop2: Popularity weights for matrix2. 'none', 'sum', or custom array.
        alpha: Coefficient applied on the raw similarity value before normalizations.
        beta1: Popularity penalization coefficient for matrix1 items.
        beta2: Popularity penalization coefficient for matrix2 items.
        k: Number of top-k items per row to keep.
        shrink: Shrinkage value that prevents instability when normalizations are small.
        shrink_type: Type of shrinkage: 'stabilized', 'bayesian', 'additive'.
        threshold: Minimum similarity value to retain.
        binary: Whether to binarize the input matrix before computation.
        target_rows: List or array of row indices to compute. If None, computes all.
        target_cols: Columns to include before top-k. Can be a list or sparse mask matrix.
        filter_cols: Columns to exclude before top-k. Can be a list or sparse mask matrix.
        verbose: Whether to show a progress bar.
        format_output: Output format, either 'csr' or 'coo'. Use 'coo' on Windows.
        num_threads: Number of threads to use (0 = all available cores).

    Returns:
        A sparse matrix of top-k s_plus similarities in the specified format.
    """
    stabilized_shrink, bayesian_shrink, additive_shrink = __get_shrink_values__(shrink, shrink_type)
    return _sim.s_plus(
        matrix1, matrix2=matrix2,
        l1=l1, l2=l2, l3=l3,
        t1=t1, t2=t2,
        c1=c1, c2=c2,
        a1=alpha,
        weight_depop_matrix1=pop1,
        weight_depop_matrix2=pop2,
        p1=beta1,
        p2=beta2,
        k=k,
        stabilized_shrink=stabilized_shrink,
        bayesian_shrink=bayesian_shrink,
        additive_shrink=additive_shrink,
        threshold=threshold,
        binary=binary,
        target_rows=target_rows,
        target_cols=target_cols,
        filter_cols=filter_cols,
        verbose=verbose,
        format_output=format_output,
        num_threads=num_threads
    )