Similarity API
Basic Similarities
Raw Dot Product
Compute dot product similarity between rows of matrix1 and columns of matrix2.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
matrix1
|
spmatrix
|
Input sparse matrix (e.g., user-item or item-user). |
required |
matrix2
|
Optional[spmatrix]
|
Optional second matrix. If None, uses matrix1.T. |
None
|
k
|
int
|
Number of top-k items per row. |
100
|
shrink
|
float
|
Shrinkage value applied to similarity scores. |
0.0
|
threshold
|
float
|
Minimum similarity value to retain. |
0.0
|
binary
|
bool
|
Whether to binarize the input matrix before similarity computation. |
False
|
target_rows
|
Optional[Union[list[int], ndarray]]
|
List or array of row indices to compute. If None, computes all. |
None
|
target_cols
|
Optional[Union[list[int], ndarray, spmatrix]]
|
Columns to include before top-k. Can be a list or sparse mask matrix. |
None
|
filter_cols
|
Optional[Union[list[int], ndarray, spmatrix]]
|
Columns to exclude before top-k. Can be a list or sparse mask matrix. |
None
|
verbose
|
bool
|
Whether to show a progress bar. |
True
|
format_output
|
Literal['csr', 'coo']
|
Output format: 'csr' or 'coo'. Use 'coo' on Windows. |
'coo'
|
num_threads
|
int
|
Number of threads to use (0 means all available cores). |
0
|
Returns:
Type | Description |
---|---|
spmatrix
|
A sparse matrix of shape (n_rows, n_cols) in the specified format, |
spmatrix
|
containing the top-k dot product similarities. |
Source code in similaripy/similarity.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
|
Cosine Similarity
Compute cosine similarity between sparse vectors.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
matrix1
|
spmatrix
|
Input sparse matrix. |
required |
matrix2
|
Optional[spmatrix]
|
Optional second matrix. If None, uses matrix1.T. |
None
|
k
|
int
|
Number of top-k items per row to keep. |
100
|
shrink
|
float
|
Shrinkage value applied to similarity scores. |
0.0
|
threshold
|
float
|
Minimum similarity value to retain. |
0.0
|
binary
|
bool
|
Whether to binarize the input matrix before computation. |
False
|
target_rows
|
Optional[Union[list[int], ndarray]]
|
List or array of row indices to compute. If None, computes all. |
None
|
target_cols
|
Optional[Union[list[int], ndarray, spmatrix]]
|
Columns to include before top-k. Can be a list or sparse mask matrix. |
None
|
filter_cols
|
Optional[Union[list[int], ndarray, spmatrix]]
|
Columns to exclude before top-k. Can be a list or sparse mask matrix. |
None
|
verbose
|
bool
|
Whether to show a progress bar. |
True
|
format_output
|
Literal['csr', 'coo']
|
Output format, either 'csr' or 'coo'. Use 'coo' on Windows. |
'coo'
|
num_threads
|
int
|
Number of threads to use (0 = all available cores). |
0
|
Returns:
Type | Description |
---|---|
spmatrix
|
A sparse matrix of top-k cosine similarities in the specified format. |
Source code in similaripy/similarity.py
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
|
Asymmetric Cosine
Compute asymmetric cosine similarity.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
matrix1
|
spmatrix
|
Input sparse matrix (e.g., user-item or item-user). |
required |
matrix2
|
Optional[spmatrix]
|
Optional second matrix. If None, uses matrix1.T. |
None
|
alpha
|
float
|
Controls asymmetry in cosine weighting.
|
0.5
|
k
|
int
|
Number of top-k items per row to keep. |
100
|
shrink
|
float
|
Shrinkage value applied to similarity scores. |
0.0
|
threshold
|
float
|
Minimum similarity value to retain. |
0.0
|
binary
|
bool
|
Whether to binarize the input matrix before computation. |
False
|
target_rows
|
Optional[Union[list[int], ndarray]]
|
List or array of row indices to compute. If None, computes all. |
None
|
target_cols
|
Optional[Union[list[int], ndarray, spmatrix]]
|
Columns to include before top-k. Can be a list or sparse mask matrix. |
None
|
filter_cols
|
Optional[Union[list[int], ndarray, spmatrix]]
|
Columns to exclude before top-k. Can be a list or sparse mask matrix. |
None
|
verbose
|
bool
|
Whether to show a progress bar. |
True
|
format_output
|
Literal['csr', 'coo']
|
Output format, either 'csr' or 'coo'. Use 'coo' on Windows. |
'coo'
|
num_threads
|
int
|
Number of threads to use (0 = all available cores). |
0
|
Returns:
Type | Description |
---|---|
spmatrix
|
A sparse matrix of shape (n_rows, n_cols) containing the top-k |
spmatrix
|
asymmetric cosine similarities in the specified format. |
Source code in similaripy/similarity.py
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
|
Jaccard Similarity
Compute Jaccard similarity (intersection over union).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
matrix1
|
spmatrix
|
Input sparse matrix. |
required |
matrix2
|
Optional[spmatrix]
|
Optional second matrix. If None, uses matrix1.T. |
None
|
k
|
int
|
Number of top-k items per row to keep. |
100
|
shrink
|
float
|
Shrinkage value applied to similarity scores. |
0.0
|
threshold
|
float
|
Minimum similarity value to retain. |
0.0
|
binary
|
bool
|
Whether to binarize the input matrix before computation. |
False
|
target_rows
|
Optional[Union[list[int], ndarray]]
|
List or array of row indices to compute. If None, computes all. |
None
|
target_cols
|
Optional[Union[list[int], ndarray, spmatrix]]
|
Columns to include before top-k. Can be a list or sparse mask matrix. |
None
|
filter_cols
|
Optional[Union[list[int], ndarray, spmatrix]]
|
Columns to exclude before top-k. Can be a list or sparse mask matrix. |
None
|
verbose
|
bool
|
Whether to show a progress bar. |
True
|
format_output
|
Literal['csr', 'coo']
|
Output format, either 'csr' or 'coo'. Use 'coo' on Windows. |
'coo'
|
num_threads
|
int
|
Number of threads to use (0 = all available cores). |
0
|
Returns:
Type | Description |
---|---|
spmatrix
|
A sparse matrix of top-k Jaccard similarities in the specified format. |
Source code in similaripy/similarity.py
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
|
Dice Similarity
Compute Dice similarity (harmonic mean of overlap and size).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
matrix1
|
spmatrix
|
Input sparse matrix. |
required |
matrix2
|
Optional[spmatrix]
|
Optional second matrix. If None, uses matrix1.T. |
None
|
k
|
int
|
Number of top-k items per row to keep. |
100
|
shrink
|
float
|
Shrinkage value applied to similarity scores. |
0.0
|
threshold
|
float
|
Minimum similarity value to retain. |
0.0
|
binary
|
bool
|
Whether to binarize the input matrix before computation. |
False
|
target_rows
|
Optional[Union[list[int], ndarray]]
|
List or array of row indices to compute. If None, computes all. |
None
|
target_cols
|
Optional[Union[list[int], ndarray, spmatrix]]
|
Columns to include before top-k. Can be a list or sparse mask matrix. |
None
|
filter_cols
|
Optional[Union[list[int], ndarray, spmatrix]]
|
Columns to exclude before top-k. Can be a list or sparse mask matrix. |
None
|
verbose
|
bool
|
Whether to show a progress bar. |
True
|
format_output
|
Literal['csr', 'coo']
|
Output format, either 'csr' or 'coo'. Use 'coo' on Windows. |
'coo'
|
num_threads
|
int
|
Number of threads to use (0 = all available cores). |
0
|
Returns:
Type | Description |
---|---|
spmatrix
|
A sparse matrix of top-k Dice similarities in the specified format. |
Source code in similaripy/similarity.py
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
|
Tversky Similarity
Compute Tversky similarity between sparse vectors.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
matrix1
|
spmatrix
|
Input sparse matrix. |
required |
matrix2
|
Optional[spmatrix]
|
Optional second matrix. If None, uses matrix1.T. |
None
|
alpha
|
float
|
Tversky weight for elements unique to matrix1. |
1.0
|
beta
|
float
|
Tversky weight for elements unique to matrix2. |
1.0
|
k
|
int
|
Number of top-k items per row to keep. |
100
|
shrink
|
float
|
Shrinkage value applied to similarity scores. |
0.0
|
threshold
|
float
|
Minimum similarity value to retain. |
0.0
|
binary
|
bool
|
Whether to binarize the input matrix before computation. |
False
|
target_rows
|
Optional[Union[list[int], ndarray]]
|
List or array of row indices to compute. If None, computes all. |
None
|
target_cols
|
Optional[Union[list[int], ndarray, spmatrix]]
|
Columns to include before top-k. Can be a list or sparse mask matrix. |
None
|
filter_cols
|
Optional[Union[list[int], ndarray, spmatrix]]
|
Columns to exclude before top-k. Can be a list or sparse mask matrix. |
None
|
verbose
|
bool
|
Whether to show a progress bar. |
True
|
format_output
|
Literal['csr', 'coo']
|
Output format, either 'csr' or 'coo'. Use 'coo' on Windows. |
'coo'
|
num_threads
|
int
|
Number of threads to use (0 = all available cores). |
0
|
Returns:
Type | Description |
---|---|
spmatrix
|
A sparse matrix of top-k Tversky similarities in the specified format. |
Source code in similaripy/similarity.py
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
|
Graph-Based Similarities
P3α
Compute P3alpha similarity using a normalized 3-step random walk.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
matrix1
|
spmatrix
|
Input sparse matrix. |
required |
matrix2
|
Optional[spmatrix]
|
Optional second matrix. If None, uses matrix1.T. |
None
|
alpha
|
float
|
Exponent for transition probabilities to control popularity effect. |
1.0
|
k
|
int
|
Number of top-k items per row to keep. |
100
|
shrink
|
float
|
Shrinkage value applied to similarity scores. |
0.0
|
threshold
|
float
|
Minimum similarity value to retain. |
0.0
|
binary
|
bool
|
Whether to binarize the input matrix before computation. |
False
|
target_rows
|
Optional[Union[list[int], ndarray]]
|
List or array of row indices to compute. If None, computes all. |
None
|
target_cols
|
Optional[Union[list[int], ndarray, spmatrix]]
|
Columns to include before top-k. Can be a list or sparse mask matrix. |
None
|
filter_cols
|
Optional[Union[list[int], ndarray, spmatrix]]
|
Columns to exclude before top-k. Can be a list or sparse mask matrix. |
None
|
verbose
|
bool
|
Whether to show a progress bar. |
True
|
format_output
|
Literal['csr', 'coo']
|
Output format, either 'csr' or 'coo'. Use 'coo' on Windows. |
'coo'
|
num_threads
|
int
|
Number of threads to use (0 = all available cores). |
0
|
Returns:
Type | Description |
---|---|
spmatrix
|
A sparse matrix of top-k P3alpha similarities in the specified format. |
Source code in similaripy/similarity.py
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
|
RP3β
Compute RP3beta similarity: P3alpha with popularity penalization.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
matrix1
|
spmatrix
|
Input sparse matrix. |
required |
matrix2
|
Optional[spmatrix]
|
Optional second matrix. If None, uses matrix1.T. |
None
|
alpha
|
float
|
Exponent for transition probabilities. |
1.0
|
beta
|
float
|
Exponent to penalize popularity based on column sums. |
1.0
|
k
|
int
|
Number of top-k items per row to keep. |
100
|
shrink
|
float
|
Shrinkage value applied to similarity scores. |
0.0
|
threshold
|
float
|
Minimum similarity value to retain. |
0.0
|
binary
|
bool
|
Whether to binarize the input matrix before computation. |
False
|
target_rows
|
Optional[Union[list[int], ndarray]]
|
List or array of row indices to compute. If None, computes all. |
None
|
target_cols
|
Optional[Union[list[int], ndarray, spmatrix]]
|
Columns to include before top-k. Can be a list or sparse mask matrix. |
None
|
filter_cols
|
Optional[Union[list[int], ndarray, spmatrix]]
|
Columns to exclude before top-k. Can be a list or sparse mask matrix. |
None
|
verbose
|
bool
|
Whether to show a progress bar. |
True
|
format_output
|
Literal['csr', 'coo']
|
Output format, either 'csr' or 'coo'. Use 'coo' on Windows. |
'coo'
|
num_threads
|
int
|
Number of threads to use (0 = all available cores). |
0
|
Returns:
Type | Description |
---|---|
spmatrix
|
A sparse matrix of top-k RP3beta similarities in the specified format. |
Source code in similaripy/similarity.py
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
|
Hybrid Similarity
S Plus
Compute hybrid S Plus similarity with weighted Tversky and Cosine components.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
matrix1
|
spmatrix
|
Input sparse matrix. |
required |
matrix2
|
Optional[spmatrix]
|
Optional second matrix. If None, uses matrix1.T. |
None
|
l
|
float
|
Mixing parameter between Tversky (l1) and Cosine (l2). |
0.5
|
t1
|
float
|
Tversky alpha for matrix1. |
1.0
|
t2
|
float
|
Tversky beta for matrix2. |
1.0
|
c
|
float
|
Cosine exponent coefficient. |
0.5
|
k
|
int
|
Number of top-k items per row to keep. |
100
|
shrink
|
float
|
Shrinkage value applied to similarity scores. |
0.0
|
threshold
|
float
|
Minimum similarity value to retain. |
0.0
|
binary
|
bool
|
Whether to binarize the input matrix before computation. |
False
|
target_rows
|
Optional[Union[list[int], ndarray]]
|
List or array of row indices to compute. If None, computes all. |
None
|
target_cols
|
Optional[Union[list[int], ndarray, spmatrix]]
|
Columns to include before top-k. Can be a list or sparse mask matrix. |
None
|
filter_cols
|
Optional[Union[list[int], ndarray, spmatrix]]
|
Columns to exclude before top-k. Can be a list or sparse mask matrix. |
None
|
verbose
|
bool
|
Whether to show a progress bar. |
True
|
format_output
|
Literal['csr', 'coo']
|
Output format, either 'csr' or 'coo'. Use 'coo' on Windows. |
'coo'
|
num_threads
|
int
|
Number of threads to use (0 = all available cores). |
0
|
Returns:
Type | Description |
---|---|
spmatrix
|
A sparse matrix of top-k similarities based on combined Tversky and Cosine scoring. |
Source code in similaripy/similarity.py
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 |
|